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ABSTRACT
Operation and Maintenance (O&M) costs for nuclear power plants (NPPs)

are very large. The nuclear industry is beginning to see reactors shut down—even
after their operating licenses have been extended—because they are not
economically competitive with other energy sources. These early closures happen
due to economic reasons, despite excellent safety records. Therefore, it is
imperative to reduce costs in order to prevent these early closures. This paper
showcases recent research on advanced fault diagnostics techniques and
preventative maintenance optimization (PMO) for reducing NPP maintenance
costs. This report focuses on the feedwater and condensate system (FWCS) for
both pressurized- and boiling-water reactor (BWR) systems. The computerized
maintenance management system (CMMS), which contains the plant’s digital
record of all corrective maintenance (CM) and preventative maintenance (PM)
work orders, provided the ground truth for locating potential faults and labeling
the process data as either healthy or faulted. Various feature extraction
techniques were utilized to further differentiate the faulted data from the healthy
data. Through a cross-validation procedure, support vectors machines (SVMs)
were used to label other test sets of process data as either healthy or faulted.
Similar faults were not found within the BWR system, thus opening up the
potential for PMO, since an unnecessary amount of PM leads to inflated
maintenance costs. This paper summarizes the steps for PMO, from component
health determinations to recommendations for action. An example of PMO
assessment is presented for condensate pumps (CPs), condensate booster pumps
(CBPs), and the respective motors that drive them.
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1. INTRODUCTION
For economic reasons, the nuclear industry is witnessing premature closure of nuclear power plants

(NPPs), despite excellent safety records [1]. Operations and Maintenance (O&M) activities are some of
the largest costs in operating legacy light-water plants [2]. By reducing O&M costs, nuclear energy can
become more economically competitive with other energy sources. This can be achieved by leveraging
machine-learning (ML) and artificial intelligence technologies to develop data-driven algorithms to better
diagnose potential faults within the system [3]. Improved accuracy of the models can lead to a reduction
in unnecessary maintenance, thus reducing costs associated with parts, labor, and unnecessary planned,
forced, or extended outages.

The nuclear industry’s excellent safety record is partly due to the amount of preventative maintenance
(PM) it performs. Inspections, replacements, refurbishments, vibration monitoring, oil sampling, and
other such tasks are all performed at regular intervals [4]. Each task carries an associated cost but reduces
the likelihood of certain component failure modes. The frequencies at which these tasks are performed
should be reassessed throughout the life of the plant as a means to reduce O&M costs while still
maintaining safety.

1.1 Scope of this report
The overall goal of this report is to reduce the costs associated with the nuclear industry’s

maintenance practices. This is accomplished via a two-prong approach: condition-based monitoring
(CBM) and PM optimization (PMO).

First, this report investigates CBM techniques in order to identify potential faults and degradation
within the feedwater and condensate system (FWCS)’s condensate pumps (CPs), condensate booster
pumps (CBPs), and their associated motors. This report focuses on utilizing heterogenous data in
combination with information from the computerized maintenance management system (CMMS) in order
to identify potential condition indicators. These indicators were then used in conjunction with ML
techniques to seek out other faults within the system. By accurately predicting degradation, the
appropriate PM can be scheduled in order to avoid unplanned downtimes and asset failures. Actual plant
data from a boiling-water reactor (BWR) FWCS over a large period of time was used in this CBM
analysis.

Next, this report examines the application of PMO to update PM frequencies, based on component
histories and the opinion of subject matter experts. This research focuses on how to determine whether a
component is a PMO candidate, along with the steps to perform the PMO so that labor costs can be
minimized by reducing PM frequencies in an intelligent manner. CBM and PM work orders from a
pressurized-water reactor (PWR) over a 5-year period were used in the PMO analysis.

This report is the last in a series of documents detailing online monitoring, wireless communication
networks, and the development of diagnostic and prognostic models using heterogenous data regarding
critical balance of plant equipment in NPPs [5-9]. The previous documents in this series evaluated
potential wireless technologies and communication networks inside NPPs, based on their performance
and economics [5-7]; assessed vibration sensors with wireless capabilities [8]; and developed formal
methodologies for cleaning data and objectively comparing ML prognostic models [9].

1.2 Organization of this report
Section 2 details fault detection procedures, including a BWR and PWR FWCS description and CBM

overview. Section 3 summarizes the steps necessary for PMO. Section 4 covers the preliminary results
from the fault detection algorithms and PMO, and describes the types of data being employed. Section 5
summarizes the report and details both ongoing and future work.
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2. FAULT DETECTION
Faults within a system can accumulate into asset failure. Failure does not necessarily mean that the

component is physically broken, just that it may not be performing within the desired ranges. Fault
detection is the process of detecting deviations from healthy operating conditions, and fault diagnosis
classifies the reason behind such deviations. With appropriate sensor data, anomalies can be detected so
that appropriate maintenance can be scheduled to remedy the fault [10]. This report focuses on CPs,
CBPs, and their associated motors. Data and CMMS work orders were analyzed for both a PWR and
BWR system over the last five years.

2.1 Systems of interest
The system of interest here is the FWCS. For BWRs, this system supplies the reactor pressure vessel

(RPV) with clean, demineralized water at the desired temperature and pressure, in accordance with the
rate of steam production. This process begins at the main condenser, which collects a mixture of water
and vapor from the turbines. The main condenser condenses the remaining vapor into water, retains the
water long enough for the short-lived radioisotopes to decay, and de-aerates the condensate of fission
gases. The water is then driven by several CPs, which serve as the driving force for the system. The water
then heads through a system of prefilters, demineralizers, and chemical additives that work to condition
the coolant. CBPs then provide the motive force to push the condensate through the low-pressure heaters,
preheating the coolant before it enters the RPV. This increases the plant’s thermal efficiency.

For PWRs, the FWCS provides coolant to the steam generator at the desired temperature and
pressure, in accordance with the rate of steam production. PWRs are comprised of two loops. The primary
loop provides coolant through the core, while the secondary loop provides water through the steam
generator side. The PWR FWCS follows a similar path as the BWR FWCS, but with less conditioning for
the condensate, as it does not travel to and from the RPV. The condensate travels from the condenser to
the CPs, low-pressure heaters, CBPs, high-pressure heaters, and steam generator.

This study focuses on the CPs, CBPs, and the respective motors that drive them in both BWR and
PWR plants. In BWR plants, the condensate motor drives a pair of CPs and CBPs. In PWR plants, each
CP and CBP has its own respective motor driving it. Specifics on each of these components are given
below.

2.1.1 Motors
A BWR FWCS is propelled by four sets of CP and CBP pairs. Each pair of pumps is driven by a

common motor. This motor is a 200-amp, 1750-hp, horizontally positioned, oil-lubricated induction
motor. The PWR FWCS is propelled by three sets of CPs and CBPs. Each pump is driven by its own
motor. The PWR CP motors are vertical 1250-hp motors. The PWR CBP motors are horizontal 2000-hp
motors.

These motors convert electrical energy into torque, and potential failures can be found throughout this
process. Common failure locations include the frame and mounting, electrical leads, stator windings,
shaft, bearings, rotor, and lubricant [11]. Failures within these locations can be found via the appropriate
discovery method. Such discovery methods include inspections, oil analysis, electrical tests, bearing
temperatures, ultrasonic monitoring, pressure tests, winding resistance, thermography, etc. [12]. No single
method can catch every form of degradation, so a suite of methods must be employed. Inspections can
uncover most failure types but are often expensive, time-consuming, or require the system to be offline.
By utilizing the appropriate sensors that collect data from heterogenous sources, both common and severe
failure mechanisms should be identifiable.
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PM aims to reduce the likelihood of failure through routine tasks. PM tasks for the motors include
inspections, electrical testing, vibration analysis, and refurbishments [12]. Inspections aim to discover
potential problems with baffles, bearing seals, insulation, mounting, gaskets, motor leads, cages, shafts,
stator windings, etc. Electrical testing shows problems with the electrical connections, capacitors,
windings, and lamination. Vibration analysis can provide insight into faults stemming from rotating
machinery, including bearings, mounting, shafts, and rotors. Refurbishments, sometimes called
“overhauls,” aim to repair motors into good-as-new condition.

2.1.2 Pumps
The CPs and CBPs within the BWR FWCS are horizonal, single-stage, centrifugal-type pumps. They

can move water at a rate of 6,825 gal/min. All four are required for normal full-load operation. Each CP is
connected by a common motor to the CBP. In the PWR FWCS, the CPs are vertical, three-stage
centrifugal pumps, while the CBPs are horizontal, single-stage centrifugal pumps. The water leaving the
condenser is at low pressure and 90 F. The FWCS works to raise these readings to 1,100 psi and 425º F.

The centrifugal pump uses the motor’s rotational energy to increase the flow rate and pressure of the
water within the system. Common failure locations for centrifugal pumps include seals, bearings,
connections, and gaskets, as well as the impeller, casing, lubricant mounting, shaft, and stuffing box. PM
tasks for the pumps are similar to those for the motors, except in regard to electrical testing.

2.2 Condition-based monitoring
CBM emphasizes the condition monitoring aspect of maintenance. Data and inspections are used in

combination to infer the health or status of the component. Once a sign of degradation is found and the
degradation can be diagnosed, the damage can then be trended. Maintenance can be scheduled and
performed prior to the component failing to meet its performance criteria.

Faults can be detected using data-driven or model-based techniques [13]. Data-driven techniques
utilize sensor data collected from the system and do not require expert knowledge of the physics
associated with the system. Data-driven techniques require a sufficient amount of historical data regarding
system operations under various conditions. For the models to be most effective, the training data should
also include possible failure events. Such data can be difficult to obtain for NPP components, since safety
is such a key priority. Fault detection in this case may appear similar to anomaly detection, due to the
ratio of healthy to faulted data collected. Some data-driven ML techniques include artificial neural
networks [14], auto-associative kernel regression [15], and support vector machines (SVMs) [16-19]. This
report focuses on the capability of SVMs to separate healthy and faulted sensor data.

SVMs are classification algorithms that aim to create a hyperplane to separate out two sets of data:
healthy and faulted. The core concepts of SVMs are the kernel function and optimization routine [16,17].
In most cases, the two sets of data will not be linearly separatable, so the input data must be transformed
to a higher-dimensional space via a kernel function. The kernel function returns the inner product between
two points for a particular feature space. Common kernel functions include the polynomial, sigmoid, and
radial basis functions [18]. The equation for the radial basis function is given in Equation 1.

Once the data has been transformed into a higher-dimensional space, a hyperplane must be created to
separate the two datasets. An optimization routine is used to find the hyperplane that best separates the
datasets by maximizing the margin between the two classes. The fitted hyperplane is described by the
data points closest to the margin’s boundary, which are then called “support vectors.” These support
vectors can be used to classify new sets of data. SVMs are noted for their accuracy, regularization, and
generalization abilities [19].

SVM is a supervised learning technique, meaning it requires labeled training data. In practice, such
data can be difficult to obtain. For this report, labeled data is obtained by combining the CMMS with the
opinion of subject matter experts. The CMMS catalogues all maintenance actions performed on the
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system. This includes maintenance to fix faults (e.g., oil leaks) and conduct bearing replacements. Before
the system is taken offline for corrective maintenance (CM), the system is assumed to be operating in a
degraded state that will be labeled as faulted. Exactly when this degraded state began is determined via
the opinion of subject matter experts, based on deviations in temperature measurements from expected
conditions. In many mechanical applications, a rise in temperature correlates with degraded performance,
typically through increased vibration or friction.

Model-based techniques require a priori knowledge about the system and its potential failures [3].
These models can be developed based on first principles such as Newton’s laws, but require detailed
information about the materials used, the failure mechanisms, and the operating conditions. These types
of models can be difficult and costly to create. Model-based techniques are outside the scope of this
paper.

3. PREVENTATIVE MAINTENANCE OPTIMIZATION
PM is any regularly performed task designed to reduce the likelihood of failure. This includes tasks

such as component refurbishments, electrical testing, lubrications, cleanings, and replacements. Each of
these tasks can reduce the likelihood of certain failure modes. Oil and vibration analyses, operator rounds,
and thermography are all examples of the types of monitoring that provide indications of degradation.
They can be used to determine and predict the condition of components. CBM activities can be scheduled
and performed in a timely manner prior to any in-service failure. The initial PM frequencies were
established through a combination of vendor recommendations, expert opinions, and operating
experience. As more experience is obtained, these frequencies should be re-examined and then adjusted
accordingly. Poor performance may require more PM in order to reduce in-service failures, whereas
excellent performance may suggest that less PM is required, thus leading to reductions in overall O&M
costs. PMO should take into account expert knowledge and the historical health of the component when
creating a basis for determining which PM frequencies can be extended. This report focuses on an
analytical approach for determining which PM task frequencies to extend.

First, the historical health of the component is analyzed to determine whether the component is
eligible for PMO. In this report, the components’ health was determined from the CM work orders found
in the CMMS. The CM work orders detail every component-associated action that is not a regularly
scheduled activity. Additional vibration measurements, replacements, fixes, and performance verification
are all activities found in CM work orders. Leaks, repairs, and replacements indicate that degraded
performance has occurred within the component. If said events occurred recently, the associated
components would be ineligible for PMO. However, PM is not capable of preventing all faults. The goal
of PMO is to optimize resources in order to maximize safety and uptime while also reducing costs. If a
component is only experiencing one type of fault, the frequencies of PM unrelated to that particular
failure mode can still be potentially extended as well. For example, if the nuisance fault is produced by
leaking seals, that is something discovered primarily through inspections. Oil and vibration analyses are
unrelated to seal leakage, so the opportunity to extend their PM frequencies may still apply.

Once historical data have been used to identify a component as healthy, each PM task and the
frequency thereof should be evaluated against industry averages or an expert database such as the Electric
Power Research Institute (EPRI)’s Preventive Maintenance Basis Database (PMBD). The EPRI PMBD is
a maintenance information database containing recommendations on PM frequencies for major
components related to power generating facilities. A justification for extending certain PM frequencies
can be made by comparing current PM frequencies against those recommendations found in the EPRI
PMBD. The PMO process is a delay feedback loop. Effects from extending the PM frequencies will not
be seen immediately, so extending them should consist of small, iterative steps.
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4. PRELIMINARY RESULTS
This section provides an overview of the sensor data and CMMSs from two different types of

operational NPPs. The primary objective of this analysis is to find potential faults within the FWCS and
to assess the historical health of each component. If the assessment reveals the component to be healthy,
PMO will be applied where possible. By reducing PM frequencies in an intelligent manner, maintenance
costs can be reduced while still maintaining a reasonable safety margin.

4.1 Data description
Different amounts of data were available for the BWR and PWR systems. For the BWR system,

sensor data and CBM records were provided for a 5-year period. No PM records were available, so a final
PMO cannot be made. However, an assessment of whether PMO is applicable can be made using the data
and records available. For the PWR system, a year’s worth of sensor data was available for two units,
while CM and PM records were available for a 5-year period. This combination is better-suited for PMO,
since all the maintenance tasks are available. This dataset may be less suitable for fault diagnostics,
depending on the signal of interest. Some temperature signals experience a clear seasonal trend: colder in
winter, warmer in summer.

The available sensor data from both systems are similar and include variables such as generator gross
load, average feedwater flows, and data on temperatures/pressures for the condensers, CPs, CBPs, and
their associated motors for multiple pump trains. Each dataset consists of unlabeled data and is sampled
hourly. There was no indication as to whether any portion of the data corresponded with equipment
failure. The available datasets each encompassed steady-state operation, shutdowns for refueling, and
derates of varying sizes. There was insufficient information to determine the cause of each derate.

Work orders from the CMMS were provided for a 5-year period. For the BWR system, the available
work orders included CM work orders—but not PM work orders—for the CPs and CBPs. These work
orders contained information on additional vibration testing, reworks, and replacements. For the PWR
system, both CM and PM work orders were available. The PM work orders can include information on
such things as routine vibration monitoring, refurbishments, and oil sampling. The historical health of the
component can be determined and the PM optimized.

4.2 Signs of degradation
In this report, fault diagnostics are analyzed from two perspectives: a data-driven perspective and a

CMMS perspective. In the data-driven perspective, the sensor data is analyzed for faults, anomalies, or
trends that may indicate degradation or reduced performance. The CMMS is then used to provide the
ground truth to verify that a fault occurred, based on any CM work orders remedying the issue. Some
changes seen within the FWCS sensor data are not due to faults, but rather changes in operating
conditions related to other systems. Diagnosing this behavior is difficult, as sensor data from these other
systems were unavailable for this report.

The fault diagnostics process from the CMMS perspective begins by analyzing the CMMS for CM
work orders related to failures and fixes. The sensor data collected prior to the work order being issued
are analyzed for signs of incipient degradation or developing trends over a period of time. It should be
noted that not all failure modes can be detected using the sensor data available. Types of available sensor
data include gross load, bearing temperatures, pressures, flow, and motor current. Failures concerning
seals, shafts, impellers, and oil require some combination of inspection, vibration, and oil analyses. NPPs
perform these tasks at regular intervals, but such data were unavailable for this report. Instead, this report
focuses on the process data acquired from in-situ sensors.
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The BWR dataset was first analyzed from a data-driven perspective. The dataset was cleaned, and
variables were analyzed individually to observe characteristic features from each signal. Some
temperature variables associated with the pumps exhibited seasonal trends: hotter in summer, cooler in
winter. Since the dataset covered a period of several years, an expected temperature was calculated for
each date, using the average temperature calculated from the other years. These averages were then
smoothed using a median filter to remove fluctuations in temperatures due to daily or weekly weather
variations. The condition indicator for the pump would then measure the difference between the seasonal
average and the current component temperature.

The temperature condition indicator measuring the difference between the component’s current
temperature and the seasonal average can be seen in Figure 1. Positive values indicate that the component
is running hotter than the seasonal average; negative values indicate that the component is running cooler.
Negative values are dismissed in this analysis because components typically run hotter when certain
degradation modes have occurred, due to increased friction. Positive values above a 6-degree Fahrenheit
temperature difference were labeled as faulted. This cutoff was chosen based on the component’s history
before the outage. Other methods, such as step detection, could be deployed to determine deviations in
normal operation. The faulted section can be seen in the red highlighted area in Figure 1. The period of
time immediately following the faulted section, and for which no data were collected, represents a
regularly scheduled refueling outage.

Figure 1. The average seasonal component temperature was subtracted from the current component
temperature. Positive values indicate that the component was hotter than the seasonal average.
Highlighted in red is the section of training data labeled as faulted.

The temperature condition indicator was combined with other process variables (e.g., gross load,
flow, and pressure) to observe the total system response to this potential fault. The high dimensionality of
this combination was reduced using principal component (PC) analysis. With just three PCs, 87% of the
information within the dataset was represented. These three PCs are seen in Figure 2. Data within the
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faulted section of Figure 1 are also labeled as faulted in Figure 2, while all other data points are labeled as
healthy. Temperature data was not considered when the pump was offline. Figure 2 shows a clear
separation between the faulted and healthy data. However, this separation may not be due to the existence
of a fault, but rather the ramp down for a planned outage. The temperature difference between the
expected and actual temperature values changes in relation to the plant’s other process variables. This
nonstationary behavior makes it difficult to determine the cause of the separation.

Figure 2. PC analysis was implemented as a preprocessing step to further separate the faulted and healthy
datasets.

SVM uses the fault labels to search for similar faults in other years. First, to capture the differences
between the healthy and faulted data, the SVM was trained on the data presented in Figure 2. Faulted data
made up 4.1% of the total training data. The SVM was trained using a linear kernel function, resulting in
242 support vectors. The SVM was then tested on the training data to double-check that it could correctly
label that data. On the training data, it proved 99% accurate. The confusion matrix for the training data
can be seen in Figure 3, and shows how the model classified each faulted and healthy data point. The
SVM was then used to search for similar faults from other years. The test data was normalized and
transformed into the same PC space as the training data. The SVM then labeled the test data as either
faulted or healthy, as shown in Figure 4.
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Figure 3. Confusion matrix from SVM training data.

The red spikes throughout Figure 3 show each data point that the SVM labeled as faulted. This test
year is interesting because no repairs were made to the CP of interest, and a similar de-ramp into an
outage was performed. Since no repairs were made to this pump, all data throughout the test year should
be labeled as healthy. Under this assumption, the accuracy of the predictions seen in Figure 4 was 81.4%.
The accuracy in predicting other years reached as high as 99.7% for years involving only healthy, steady-
state operation. This high accuracy can seem misleading, but the system was operating under healthy,
steady-state conditions over that entire year, so no faults were expected to be identified.

After the data-driven approach was completed, maintenance work orders were reviewed to confirm
the presence of a fault. Work orders completed during the outage immediately following the labeled faults
seen in Figure 1 suggest that the thermocouple experienced a drift or fault.
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Figure 4. The SVM was used to predict faults in other years. The red spikes indicate either potential faults
or inaccurate labels.

Fault diagnostics were then analyzed from the CMMS perspective by reviewing the CM work orders
related to failures and fixes. CM work orders generated outside the regularly scheduled refueling outages
were given higher priority in this review, since they can immediately affect component uptimes and plant
output. One such fault was corroborated using the CMMS. An inboard oil leak was discovered in one of
the CPs. This leak was due to a bearing’s outer edge riding against the coupling side of the housing. The
CP was taken offline during plant operation to fix the bearing’s leak, causing a 27.5% derate in the plant’s
output over a 9-hour period.

This leak was most likely discovered during a routine walk-through or via route-based vibration
monitoring. The leak was not significant enough to impact those parameters that were being monitored
and to which we had access. These parameters included gross load, inboard/outboard bearing
temperatures, flow, and pressure. This shows that complete situational awareness is unavailable via the
current capabilities of the embedded sensors, causing inspections to remain necessary. A potential way of
diagnosing this type of leakage is through the position of the temperature control valve. The temperature
control valve position may vary, as the leakage results in less volume to control. Alternatively, the
bearing leakage could potentially be discovered via in situ vibration monitoring. Bearing vibrations may
be affected by the size and position of the leak, or by how the bearing’s outer edge rode against the
housing. In such cases, the change in vibration would be detected in a timelier manner through continuous
online monitoring.

4.3 Preventative maintenance recommendations
Maintenance plans are established to ensure safety and reliability during plant operation. PM is one

aspect of such plans, and it is performed at pre-defined intervals, regardless of the component’s current
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condition. This is analogous to changing the oil in your car every 5,000 miles without checking the engine
condition or oil quality. PM also includes regularly scheduled inspections, testing, and refurbishments.
These tasks are implemented in an attempt to reduce the number of failures and downtimes. However,
these tasks can be both costly and labor-intensive. For this reason, the frequencies at which PM tasks are
performed should be reviewed and updated as more operating experience is acquired. This creates a
feedback loop in which maintenance frequency impacts component performance—in turn, affecting
maintenance frequency. To speed up this feedback loop, current PM frequencies for healthy components
are compared against the recommendations in the EPRI PMBD. In addition to recommended PM
frequencies for select tasks, this database includes failure modes and discovery methods. By reviewing a
component’s operating history and current PM frequency, a justification can be made for suggesting that
the frequency be extended. The risk associated with extending the PM task frequency can be also
calculated using the EPRI PMBD.

Table 1. Example of current PM frequencies and recommendations.

Component PM Task
Current PM
Frequency EPRIPMBD Recommendation

CP and CBP Refurbishment 8 years As required Good candidate for
frequency extension

Vibration
Monitoring

3 months 3 months Keep

Oil Analysis 6 months 6 months Keep

Motor Vibration
Analysis

3 months 3 months Keep

Fan Cleaning 6 months 2 months Keep

Oil Analysis 6 months 6 months or
1 year

Good candidate for
frequency extension

Electrical
Testing/
Inspection

5 years 4 years Keep

Over the 5-year period, a total of 705 CBM activities were undertaken between the two PWR systems
with regards to the FWCS. These activities vary in location and severity, ranging from simple inspections
or alignments to bearing failures and equipment replacements. This report focuses specifically on
mechanical issues stemming from the CPs, CBPs, and their respective motors. The CBM work orders
were reviewed first, in order to ascertain the historical health of the component.

The CBPs in unit 1 primarily experienced issues concerning mechanical seal leaks. CBP 11 showed
three instances of leakage or seal problems. Mechanical seals were also replaced twice: once in 2017 and
once in 2018. There was also a possible water intrusion event in 2016, but no other major problems were
observed. CBP 12 had only one instance of condensate leak in 2018. CBP 13 had two instances of seal
leakage: one in 2016 and one in 2019.

The CPs experienced issues in regard to their connections to the condensate lube oil pump (CLOP).
The CLOP for CP 13 experienced several problems, including an oil leak in 2015 and both a coupling
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break and bearing fault frequencies in 2018. Each CLOP in unit 1 was replaced to fix an alignment issue,
but no such issues were reported in 2019 or 2020.

Unit 2 experienced fewer leak issues than unit 1. CBP 21 had one instance of leakage, one thrust
bearing temperature sensor replacement, and one unplanned stoppage during start-up—with no reason
detailed in the work orders. The temperature sensor replacement was most likely a reinstallation of the
temperature sensor and was not gapped properly. CBP 22 had no leaks, but did require that a stanchion be
replaced to an elbow. CP 23 had two instances of oil leakage: one in 2017 and one in 2019. The CP 21
CLOP saw impacting within vibration readings in 2018. The CP 22 CLOP had an oil leak in 2018, as well
as two instances of running while the pump was secured. Though having the CLOP running while the CP
is offline is not detrimental to the health of the CP, it could reveal a configuration issue. The CP 23 CLOP
reported one instance of elevated noise, and the CLOP was replaced to fix alignment issues, as was also
the case with unit 1.

The records of the CP and CBP motors for both units 1 and 2 were nearly impeccable. The only
recorded issues were dirty filters in the unit 1 motors in 2019. That sort of record can open up
opportunities to extend PM frequencies for cost reduction purposes. A summary of PM tasks and the
frequencies at which these tasks are performed for each component is given in Table 1. Next to each
component’s PM frequency is the EPRI-PMBD-recommended frequency based on subject-matter-expert
opinion and component reliability data. Among the seven listed PM tasks, four have current frequencies
that differ with those recommended by the EPRI PMBD. Based on CM history and the EPRI-PMBD-
recommended frequencies, two tasks were deemed good candidates for PM frequency extensions: pump
refurbishment and motor oil analysis.

A “refurbishment” is defined as replacing a component with a spare and then sending it off to be
overhauled and repaired. Refurbishments are conducted every eight years during a plant outage, thus
avoiding any unnecessary downtimes. Tables 2 and 3 list the work orders for component refurbishments
for units 1 and 2, respectively. Since this work order history dates back five years, some component
refurbishments are not listed, due to the 8-year frequency. Overall, the CPs and CBPs had a positive CM
work history. With their EPRI-PMBD-recommended PM frequency of “as required,” CP/CBP component
refurbishment is a good candidate for PM frequency extension, though the final decision should not be
based solely on component performance. An appropriate risk assessment and review of available sensors
must be undertaken to determine the health of the pumps. To aid in determining when the pumps should
be refurbished, it is recommended that the vibration monitoring and oil analysis continue at their current
frequencies. These tasks can be used to monitor component health while trending any observable
degradation. Additionally, routine-based vibration monitoring can be replaced with online vibration
monitoring (where applicable) in order to further aid in this process. The decision of when to refurbish is
a complex one, requiring more information than available for this report.

Table 2. Most recent refurbishment work order for the unit 1 CPs, CBPs, and their associated drive
motors.

NPP 1 Unit 11 12 13

CP 5/27/16 7/15/20 5/27/16

CP Motor 5/27/16 7/15/20 5/27/16

CBP 10/12/17
6/23/20

N/A 10/12/17

CBP
Motor

N/A N/A 5/27/16
7/15/20



12

Table 3. Most recent refurbishment work order for the unit 2 CPs, CBPs, and their associated drive
motors.

NPP 2 Unit 21 22 23

CP N/A 4/10/19 3/2/17

CP Motor 3/2/17 4/16/19 3/2/17

CBP N/A N/A 5/27/15

CBP
Motor

N/A 4/10/19 5/27/15

The motors driving the CPs and CBPs have experienced minimal problems over the last 5 years. The
one instance noted in the CM work orders was due to dirty filters in the unit 1 CP motors. Since the
overall health of the components has been good over a significant period of time, PM frequency
extensions should be considered in order to reduce the overall cost of maintenance. Since the only issue
that the motors faced were dirty filters, and the current PM frequency is already longer than that
recommended by the EPRI PMBD, the fan-cleaning frequency should not be adjusted.

There is a potential opportunity to extend the frequencies of vibration and/or oil analyses for the
motors. Table 1 lists the EPRI-PMBD-recommended frequencies as being 3 months for the vibration
analysis and 6 months or a year for the oil analysis, depending on whether the motor is classified as
critical or noncritical, respectively. Either of these frequencies could potentially be extended, perhaps
even both. Furthermore, the vibration-monitoring PM task could potentially be replaced by continuous
online monitoring, which is why Table 1 suggests oil analysis to be the preferred candidate for PM
frequency extension. In the PWR system, all four CPs must be running for the system to operate at 100%
capacity. The motors that drive the CPs are critical components. The CBPs are operated in a two-out-of-
three fashion for 100% capacity. Their operation is alternated regularly in order to evenly spread out the
accumulated wear. In this case, a backup CBP is present in case one fails to operate. Even with a potential
backup, the CBP motors may still be considered critical, and a 6-month oil analysis may be advisable.
With a risk analysis and more information about the oil analysis contents, the PM frequency could likely
be extended to 9 months or even a year.

5. SUMMARY AND PATH FORWARD
O&M costs for NPPs are very large but could potentially be reduced thanks to advances in fault

diagnostics and PMO. The CMMS contains work orders detailing maintenance activities, and these can be
used to identify and label faults. ML techniques such as SVM, in combination with feature extraction
techniques, can be utilized to search for similar instances of those faults. Results indicate that not all
faults can be identified via the current suite of embedded sensors. Additional sensors or inspections would
be required to locate these elusive faults. This paper also showed the analytical steps necessary for PMO,
from component health determinations to recommendations for action. This type of analysis can be
extended to components within other systems, as long as their performance histories and PM frequencies
are known. The final determination as to which PM tasks to extend (and to what frequencies) should be
made in light of both the component’s performance history and the results of a risk analysis. Further
investigation needs to be made into the cause of anomalies observed within the data but not explained by
the CMMS. These anomalies could be due to CMMS bookkeeping errors, operational shifts, sensor drift,
etc.



13

6. ACKNOWLEDGEMENTS
This report was made possible through funding by the U.S. Department of Energy’s Office of Nuclear

Energy under the Nuclear Energy Enabling Technologies Program. We are grateful to Suibel Schuppner
at the U.S. Department of Energy and Craig Primer at Idaho National Laboratory for championing this
effort. The data used in this research was provided by Exelon Generation Company. We are also thankful
to the plant engineers for their technical discussions on the data.

7. REFERENCES

[1] Robert Bryce, “Nuclear Plants In Illinois Are Slated For Closure. Will The State’s Democratic
Politicians Save Them?” [Online]. Available:
https://www.forbes.com/sites/robertbryce/2020/08/31/nuclear-plants-in-illinois-are-slated-for-
closure-will-the-states-democratic-politicians-save-them/?sh=5e6cf62511ef.

[2] Shannon M. Bragg‐Sitton, Richard Boardman, Cristian Rabiti, and James O'Brien. “Reimagining
future energy systems: Overview of the US program to maximize energy utilization via integrated
nuclear‐renewable energy systems.” International Journal of Energy Research 44, no. 10 (August
2010): 8156–8169. First published 2020 Feb 17. https://doi.org/10.1002/er.5207

[3] Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, and A. K. Nandi, “Applications of machine learning to
machine fault diagnosis: A review and roadmap,” Mech. Syst. Signal Process. 138, p. 106587,
2020, 10.1016/j.ymssp.2019.106587.

[4] Nuclear Energy Institute, “Industry Guideline for Monitoring the Effectiveness of Maintenance
At Nuclear Power Plants,” NUMARC 93-01 Revision 4A (April 2011).
nrc.gov/docs/ML1111/ML11116A198.pdf

[5] V. Agarwal, “Wireless sensor modalities at a nuclear power site to collect vibration data,” Idaho
National Laboratory, Idaho Falls, ID, May 2020. INL/EXT-20-58548 Rev 0.

[6] K. A. Manjunatha and V. Agarwal, “Techno-economic analysis framework for wireless networks
in nuclear power plants,” Idaho National Laboratory, Idaho Falls, ID, September 2019.
INL/EXT-19-55830 Rev 0.

[7] V. Agarwal, “Enabling predictive maintenance with wireless instrumentation in balance of plant
system,” Idaho National Laboratory, Idaho Falls, July 2019. INL/EXT-21-54866 Rev 1.

[8] K. A. Manjunatha and V. Agarwal, "Review of wireless communication technologies and
technoeconomic analysis," Idaho National Laboratory, Idaho Falls, ID, May 2019.
INL/EXT-19-53966 Rev 0.

[9] Pradeep Ramuhalli, Cody Walker, Vivek Agarwal, and Nancy Lybeck, “Development of
prognostic models using plant asset data,” Oak Ridge National Laboratory, Oak Ridge, TN,
September 2020.

[10] V. Agarwal, N. Lybeck, B. Pham, R. Rusaw, and R. Bickford, “Asset Fault Signatures for
Prognostic and Health Management in the Nuclear Industry,” 2014 IEEE International
Conference on Prognostics and Health Management. Eastern Washington University. Spokane,
WA.

[11] Parekh, K.J., Solanki, S.K.B.B., Vankar, B.B.R.B., Raval, H.D.B. and Joshi, R.M., “Analysis of
the Induction Motor used in Temperature Controller Machine by Condition Based Monitoring
System.” International Journal of Science Technology & Engineering (2017) Vol 3 Issue 10.
ISSN: 2349-784X.



14

[12] EPRI, “Electrical Power Research Institute Preventative Maintenance Basis Database.” June 30,
2015.

[13] Hamed Khorasgani, Ahmed Farahat, Kosta Ristovski, Chetan Gupta, and Gautam Biswas. “A
framework for unifying model-based and data-driven fault diagnosis.” Annual Conference of the
PHM Society, 10, no. 1 (September 24, 2018). https://doi.org/10.36001/phmconf.2018.v10i1.530

[14] Olivier Janssens, Viktor Slavkovikj, Bram Vervisch, Kurt Stockman, Mia Loccufier, Steven
Verstockt, Rik Van de Walle, Sofie Van Hoecke. “Convolutional neural network based fault
detection for rotating machinery.” Journal of Sound and Vibration 377 (2016): 331–345.
https://doi.org/10.1016/j.jsv.2016.05.027

[15] Jungwon Yu, Jaeyeong Yoo, Jaeyel Jang, June Ho Park, Sungshin Kim, “A novel hybrid of auto-
associative kernel regression and dynamic independent component analysis for fault detection in
nonlinear multimode processes.” Journal of Process Control 68 (2018): 129–144.
https://doi.org/10.1016/j.jprocont.2018.05.004

[16] Alberto Diez-Olivana, Javier Del Ser, Diego Galarad, and BasilioSierra, “Data fusion and
machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0,” Inf.
Fusion 50 (2019): 92–111. 10.1016/j.inffus.2018.10.005.

[17] Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alex Smola, and Vladimir Vapnik.
“Support vector regression machines,” Advances in Neural Information Processing Systems 28
(1997): 155–161.

[18] B. Dong, C. Cao, and S. E. Lee, “Applying support vector machines to predict building energy
consumption in tropical region,” Energy Build. 37, no. 5 (2005): 545–553.
10.1016/j.enbuild.2004.09.009.

[19] R. K. Jain, K. M. Smith, P. J. Culligan, and J. E. Taylor, “Forecasting energy consumption of
multi-family residential buildings using support vector regression: Investigating the impact of
temporal and spatial monitoring granularity on performance accuracy,” Appl. Energy 123 (2014):
168–178. 10.1016/j.apenergy.2014.02.057.


	INTRODUCTION
	Scope of this report
	Organization of this report

	FAULT DETECTION
	Systems of interest
	Motors
	Pumps

	Condition-based monitoring

	PREVENTATIVE MAINTENANCE OPTIMIZATION
	PRELIMINARY RESULTS
	Data description
	Signs of degradation
	Preventative maintenance recommendations

	SUMMARY AND PATH FORWARD
	ACKNOWLEDGEMENTS
	REFERENCES

